Rust 集合与字符串

集合(Collection)是数据结构中最普遍的数据存放形式,Rust 标准库中提供了丰富的集合类型帮助开发者处理数据结构的操作。

向量

向量(Vector)是一个存放多值的单数据结构,该结构将相同类型的值线性的存放在内存中。

向量是线性表,在 Rust 中的表示是 Vec<T>。

向量的使用方式类似于列表(List),我们可以通过这种方式创建指定类型的向量:

let vector: Vec<i32> = Vec::new(); // 创建类型为 i32 的空向量
let vector = vec![1, 2, 4, 8];     // 通过数组创建向量

我们使用线性表常常会用到追加的操作,但是追加和栈的 push 操作本质是一样的,所以向量只有 push 方法来追加单个元素:

实例

fn main() {
    let mut vector = vec![1, 2, 4, 8];
    vector.push(16);
    vector.push(32);
    vector.push(64);
    println!("{:?}", vector);
}

运行结果:

[1, 2, 4, 8, 16, 32, 64]

append 方法用于将一个向量拼接到另一个向量的尾部:

实例

fn main() {
    let mut v1: Vec<i32> = vec![1, 2, 4, 8];
    let mut v2: Vec<i32> = vec![16, 32, 64];
    v1.append(&mut v2);
    println!("{:?}", v1);
}

运行结果:

[1, 2, 4, 8, 16, 32, 64]

get 方法用于取出向量中的值:

实例

fn main() {
    let mut v = vec![1, 2, 4, 8];
    println!("{}", match v.get(0) {
        Some(value) => value.to_string(),
        None => "None".to_string()
    });
}

运行结果:

1

因为向量的长度无法从逻辑上推断,get 方法无法保证一定取到值,所以 get 方法的返回值是 Option 枚举类,有可能为空。

这是一种安全的取值方法,但是书写起来有些麻烦。如果你能够保证取值的下标不会超出向量下标取值范围,你也可以使用数组取值语法:

实例

fn main() {
    let v = vec![1, 2, 4, 8];
    println!("{}", v[1]);
}

运行结果:

2

但如果我们尝试获取 v[4] ,那么向量会返回错误。

遍历向量:

实例

fn main() {
    let v = vec![100, 32, 57];
    for i in &v {
            println!("{}", i);
    }
}

运行结果:

100
32
57

如果遍历过程中需要更改变量的值:

实例

fn main() {
    let mut v = vec![100, 32, 57];
    for i in &mut v {
        *i += 50;
    }
}

字符串

字符串类(String)到本章为止已经使用了很多,所以有很多的方法已经被读者熟知。本章主要介绍字符串的方法和 UTF-8 性质。

新建字符串:

let string = String::new();

基础类型转换成字符串:

let one = 1.to_string();         // 整数到字符串
let float = 1.3.to_string();     // 浮点数到字符串
let slice = \"slice\".to_string(); // 字符串切片到字符串

包含 UTF-8 字符的字符串:

let hello = String::from(\"السلام عليكم\");
let hello = String::from(\"Dobrý den\");
let hello = String::from(\"Hello\");
let hello = String::from(\"שָׁלוֹם\");
let hello = String::from(\"नमस्ते\");
let hello = String::from(\"こんにちは\");
let hello = String::from(\"안녕하세요\");
let hello = String::from(\"你好\");
let hello = String::from(\"Olá\");
let hello = String::from(\"Здравствуйте\");
let hello = String::from(\"Hola\");

字符串追加:

let mut s = String::from(\"run\");
s.push_str(\"oob\"); // 追加字符串切片
s.push(\'!\');       // 追加字符

用 + 号拼接字符串:

let s1 = String::from(\"Hello, \");
let s2 = String::from(\"world!\");
let s3 = s1 + &s2;

这个语法也可以包含字符串切片:

let s1 = String::from(\"tic\");
let s2 = String::from(\"tac\");
let s3 = String::from(\"toe\");

let s = s1 + \"-\" + &s2 + \"-\" + &s3;

使用 format! 宏:

let s1 = String::from(\"tic\");
let s2 = String::from(\"tac\");
let s3 = String::from(\"toe\");

let s = format!(\"{}-{}-{}\", s1, s2, s3);

字符串长度:

let s = \"hello\";
let len = s.len();

这里 len 的值是 5。

let s = \"你好\";
let len = s.len();

这里 len 的值是 6。因为中文是 UTF-8 编码的,每个字符长 3 字节,所以长度为6。但是 Rust 中支持 UTF-8 字符对象,所以如果想统计字符数量可以先取字符串为字符集合:

let s = \"hello你好\";
let len = s.chars().count();

这里 len 的值是 7,因为一共有 7 个字符。统计字符的速度比统计数据长度的速度慢得多。

遍历字符串:

实例

fn main() {
    let s = String::from("hello中文");
    for c in s.chars() {
        println!("{}", c);
    }
}

运行结果:

h
e
l
l
o
中
文

从字符串中取单个字符:

实例

fn main() {
    let s = String::from("EN中文");
    let a = s.chars().nth(2);
    println!("{:?}", a);
}

运行结果:

Some(\'中\')

注意:nth 函数是从迭代器中取出某值的方法,请不要在遍历中这样使用!因为 UTF-8 每个字符的长度不一定相等!

如果想截取字符串字串:

实例

fn main() {
    let s = String::from("EN中文");
    let sub = &s[0..2];
    println!("{}", sub);
}

运行结果:

EN

但是请注意此用法有可能肢解一个 UTF-8 字符!那样会报错:

实例

fn main() {
    let s = String::from("EN中文");
    let sub = &s[0..3];
    println!("{}", sub);
}

运行结果:

thread \'main\' panicked at \'byte index 3 is not a char boundary; it is inside \'中\' (bytes 2..5) of `EN中文`\', src\\libcore\\str\\mod.rs:2069:5 
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace.

映射表

映射表(Map)在其他语言中广泛存在。其中应用最普遍的就是键值散列映射表(Hash Map)。

新建一个散列值映射表:

实例

use std::collections::HashMap;

fn main() {
    let mut map = HashMap::new();

    map.insert("color", "red");
    map.insert("size", "10 m^2");

    println!("{}", map.get("color").unwrap());
}

注意:这里没有声明散列表的泛型,是因为 Rust 的自动判断类型机制。

运行结果:

red

insert 方法和 get 方法是映射表最常用的两个方法。

映射表支持迭代器:

实例

use std::collections::HashMap;

fn main() {
    let mut map = HashMap::new();

    map.insert("color", "red");
    map.insert("size", "10 m^2");

    for p in map.iter() {
        println!("{:?}", p);
    }
}

运行结果:

(\"color\", \"red\") 
(\"size\", \"10 m^2\")

迭代元素是表示键值对的元组。

Rust 的映射表是十分方便的数据结构,当使用 insert 方法添加新的键值对的时候,如果已经存在相同的键,会直接覆盖对应的值。如果你想\”安全地插入\”,就是在确认当前不存在某个键时才执行的插入动作,可以这样:

map.entry(\"color\").or_insert(\"red\");

这句话的意思是如果没有键为 \”color\” 的键值对就添加它并设定值为 \”red\”,否则将跳过。

在已经确定有某个键的情况下如果想直接修改对应的值,有更快的办法:

实例

use std::collections::HashMap;

fn main() {
    let mut map = HashMap::new();
    map.insert(1, "a");
   
    if let Some(x) = map.get_mut(&1) {
        *x = "b";
    }
}