ECharts 数据集(dataset)
ECharts 使用 dataset 管理数据。
dataset 组件用于单独的数据集声明,从而数据可以单独管理,被多个组件复用,并且可以基于数据指定数据到视觉的映射。
下面是一个最简单的 dataset 的例子:
实例
option = {
legend: {},
tooltip: {},
dataset: {
// 提供一份数据。
source: [
[\'product\', \'2015\', \'2016\', \'2017\'],
[\'Matcha Latte\', 43.3, 85.8, 93.7],
[\'Milk Tea\', 83.1, 73.4, 55.1],
[\'Cheese Cocoa\', 86.4, 65.2, 82.5],
[\'Walnut Brownie\', 72.4, 53.9, 39.1]
]
},
// 声明一个 X 轴,类目轴(category)。默认情况下,类目轴对应到 dataset 第一列。
xAxis: {type: \'category\'},
// 声明一个 Y 轴,数值轴。
yAxis: {},
// 声明多个 bar 系列,默认情况下,每个系列会自动对应到 dataset 的每一列。
series: [
{type: \'bar\'},
{type: \'bar\'},
{type: \'bar\'}
]
}
或者也可以使用常见的对象数组的格式:
实例
option = {
legend: {},
tooltip: {},
dataset: {
// 这里指定了维度名的顺序,从而可以利用默认的维度到坐标轴的映射。
// 如果不指定 dimensions,也可以通过指定 series.encode 完成映射,参见后文。
dimensions: [\'product\', \'2015\', \'2016\', \'2017\'],
source: [
{product: \'Matcha Latte\', \'2015\': 43.3, \'2016\': 85.8, \'2017\': 93.7},
{product: \'Milk Tea\', \'2015\': 83.1, \'2016\': 73.4, \'2017\': 55.1},
{product: \'Cheese Cocoa\', \'2015\': 86.4, \'2016\': 65.2, \'2017\': 82.5},
{product: \'Walnut Brownie\', \'2015\': 72.4, \'2016\': 53.9, \'2017\': 39.1}
]
},
xAxis: {type: \'category\'},
yAxis: {},
series: [
{type: \'bar\'},
{type: \'bar\'},
{type: \'bar\'}
]
};
数据到图形的映射
我们可以在配置项中将数据映射到图形中。
我们可以使用 series.seriesLayoutBy 属性来配置 dataset 是列(column)还是行(row)映射为图形系列(series),默认是按照列(column)来映射。
以下实例我们将通过 seriesLayoutBy 属性来配置数据是使用列显示还是按行显示。
实例
option = {
legend: {},
tooltip: {},
dataset: {
source: [
[\'product\', \'2012\', \'2013\', \'2014\', \'2015\'],
[\'Matcha Latte\', 41.1, 30.4, 65.1, 53.3],
[\'Milk Tea\', 86.5, 92.1, 85.7, 83.1],
[\'Cheese Cocoa\', 24.1, 67.2, 79.5, 86.4]
]
},
xAxis: [
{type: \'category\', gridIndex: 0},
{type: \'category\', gridIndex: 1}
],
yAxis: [
{gridIndex: 0},
{gridIndex: 1}
],
grid: [
{bottom: \'55%\'},
{top: \'55%\'}
],
series: [
// 这几个系列会在第一个直角坐标系中,每个系列对应到 dataset 的每一行。
{type: \'bar\', seriesLayoutBy: \'row\'},
{type: \'bar\', seriesLayoutBy: \'row\'},
{type: \'bar\', seriesLayoutBy: \'row\'},
// 这几个系列会在第二个直角坐标系中,每个系列对应到 dataset 的每一列。
{type: \'bar\', xAxisIndex: 1, yAxisIndex: 1},
{type: \'bar\', xAxisIndex: 1, yAxisIndex: 1},
{type: \'bar\', xAxisIndex: 1, yAxisIndex: 1},
{type: \'bar\', xAxisIndex: 1, yAxisIndex: 1}
]
}
常用图表所描述的数据大部分是\”二维表\”结构,我们可以使用 series.encode 属性将对应的数据映射到坐标轴(如 X、Y 轴):
实例
var option = {
dataset: {
source: [
[\'score\', \'amount\', \'product\'],
[89.3, 58212, \'Matcha Latte\'],
[57.1, 78254, \'Milk Tea\'],
[74.4, 41032, \'Cheese Cocoa\'],
[50.1, 12755, \'Cheese Brownie\'],
[89.7, 20145, \'Matcha Cocoa\'],
[68.1, 79146, \'Tea\'],
[19.6, 91852, \'Orange Juice\'],
[10.6, 101852, \'Lemon Juice\'],
[32.7, 20112, \'Walnut Brownie\']
]
},
grid: {containLabel: true},
xAxis: {},
yAxis: {type: \'category\'},
series: [
{
type: \'bar\',
encode: {
// 将 "amount" 列映射到 X 轴。
x: \'amount\',
// 将 "product" 列映射到 Y 轴。
y: \'product\'
}
}
]
};
encode 声明的基本结构如下,其中冒号左边是坐标系、标签等特定名称,如 \’x\’, \’y\’, \’tooltip\’ 等,冒号右边是数据中的维度名(string 格式)或者维度的序号(number 格式,从 0 开始计数),可以指定一个或多个维度(使用数组)。通常情况下,下面各种信息不需要所有的都写,按需写即可。
下面是 encode 支持的属性:
// 在任何坐标系和系列中,都支持: encode: { // 使用 “名为 product 的维度” 和 “名为 score 的维度” 的值在 tooltip 中显示 tooltip: [\'product\', \'score\'] // 使用 “维度 1” 和 “维度 3” 的维度名连起来作为系列名。(有时候名字比较长,这可以避免在 series.name 重复输入这些名字) seriesName: [1, 3], // 表示使用 “维度2” 中的值作为 id。这在使用 setOption 动态更新数据时有用处,可以使新老数据用 id 对应起来,从而能够产生合适的数据更新动画。 itemId: 2, // 指定数据项的名称使用 “维度3” 在饼图等图表中有用,可以使这个名字显示在图例(legend)中。 itemName: 3 } // 直角坐标系(grid/cartesian)特有的属性: encode: { // 把 “维度1”、“维度5”、“名为 score 的维度” 映射到 X 轴: x: [1, 5, \'score\'], // 把“维度0”映射到 Y 轴。 y: 0 } // 单轴(singleAxis)特有的属性: encode: { single: 3 } // 极坐标系(polar)特有的属性: encode: { radius: 3, angle: 2 } // 地理坐标系(geo)特有的属性: encode: { lng: 3, lat: 2 } // 对于一些没有坐标系的图表,例如饼图、漏斗图等,可以是: encode: { value: 3 }
更多 encode 实例:
实例
$.get(\'https://www.itpon.com/static/js/life-expectancy-table.json\', function (data) {
var sizeValue = \'57%\';
var symbolSize = 2.5;
option = {
legend: {},
tooltip: {},
toolbox: {
left: \'center\',
feature: {
dataZoom: {}
}
},
grid: [
{right: sizeValue, bottom: sizeValue},
{left: sizeValue, bottom: sizeValue},
{right: sizeValue, top: sizeValue},
{left: sizeValue, top: sizeValue}
],
xAxis: [
{type: \'value\', gridIndex: 0, name: \'Income\', axisLabel: {rotate: 50, interval: 0}},
{type: \'category\', gridIndex: 1, name: \'Country\', boundaryGap: false, axisLabel: {rotate: 50, interval: 0}},
{type: \'value\', gridIndex: 2, name: \'Income\', axisLabel: {rotate: 50, interval: 0}},
{type: \'value\', gridIndex: 3, name: \'Life Expectancy\', axisLabel: {rotate: 50, interval: 0}}
],
yAxis: [
{type: \'value\', gridIndex: 0, name: \'Life Expectancy\'},
{type: \'value\', gridIndex: 1, name: \'Income\'},
{type: \'value\', gridIndex: 2, name: \'Population\'},
{type: \'value\', gridIndex: 3, name: \'Population\'}
],
dataset: {
dimensions: [
\'Income\',
\'Life Expectancy\',
\'Population\',
\'Country\',
{name: \'Year\', type: \'ordinal\'}
],
source: data
},
series: [
{
type: \'scatter\',
symbolSize: symbolSize,
xAxisIndex: 0,
yAxisIndex: 0,
encode: {
x: \'Income\',
y: \'Life Expectancy\',
tooltip: [0, 1, 2, 3, 4]
}
},
{
type: \'scatter\',
symbolSize: symbolSize,
xAxisIndex: 1,
yAxisIndex: 1,
encode: {
x: \'Country\',
y: \'Income\',
tooltip: [0, 1, 2, 3, 4]
}
},
{
type: \'scatter\',
symbolSize: symbolSize,
xAxisIndex: 2,
yAxisIndex: 2,
encode: {
x: \'Income\',
y: \'Population\',
tooltip: [0, 1, 2, 3, 4]
}
},
{
type: \'scatter\',
symbolSize: symbolSize,
xAxisIndex: 3,
yAxisIndex: 3,
encode: {
x: \'Life Expectancy\',
y: \'Population\',
tooltip: [0, 1, 2, 3, 4]
}
}
]
};
myChart.setOption(option);
});
视觉通道(颜色、尺寸等)的映射
我们可以使用 visualMap 组件进行视觉通道的映射。
视觉元素可以是:
- symbol: 图元的图形类别。
- symbolSize: 图元的大小。
- color: 图元的颜色。
- colorAlpha: 图元的颜色的透明度。
- opacity: 图元以及其附属物(如文字标签)的透明度。
- colorLightness: 颜色的明暗度。
- colorSaturation: 颜色的饱和度。
- colorHue: 颜色的色调。
visualMap 组件可以定义多个,从而可以同时对数据中的多个维度进行视觉映射。
实例
var option = {
dataset: {
source: [
[\'score\', \'amount\', \'product\'],
[89.3, 58212, \'Matcha Latte\'],
[57.1, 78254, \'Milk Tea\'],
[74.4, 41032, \'Cheese Cocoa\'],
[50.1, 12755, \'Cheese Brownie\'],
[89.7, 20145, \'Matcha Cocoa\'],
[68.1, 79146, \'Tea\'],
[19.6, 91852, \'Orange Juice\'],
[10.6, 101852, \'Lemon Juice\'],
[32.7, 20112, \'Walnut Brownie\']
]
},
grid: {containLabel: true},
xAxis: {name: \'amount\'},
yAxis: {type: \'category\'},
visualMap: {
orient: \'horizontal\',
left: \'center\',
min: 10,
max: 100,
text: [\'High Score\', \'Low Score\'],
// Map the score column to color
dimension: 0,
inRange: {
color: [\'#D7DA8B\', \'#E15457\']
}
},
series: [
{
type: \'bar\',
encode: {
// Map the "amount" column to X axis.
x: \'amount\',
// Map the "product" column to Y axis
y: \'product\'
}
}
]
};
交互联动
以下实例多个图表共享一个 dataset,并带有联动交互:
实例
setTimeout(function () {
option = {
legend: {},
tooltip: {
trigger: \'axis\',
showContent: false
},
dataset: {
source: [
[\'product\', \'2012\', \'2013\', \'2014\', \'2015\', \'2016\', \'2017\'],
[\'Matcha Latte\', 41.1, 30.4, 65.1, 53.3, 83.8, 98.7],
[\'Milk Tea\', 86.5, 92.1, 85.7, 83.1, 73.4, 55.1],
[\'Cheese Cocoa\', 24.1, 67.2, 79.5, 86.4, 65.2, 82.5],
[\'Walnut Brownie\', 55.2, 67.1, 69.2, 72.4, 53.9, 39.1]
]
},
xAxis: {type: \'category\'},
yAxis: {gridIndex: 0},
grid: {top: \'55%\'},
series: [
{type: \'line\', smooth: true, seriesLayoutBy: \'row\'},
{type: \'line\', smooth: true, seriesLayoutBy: \'row\'},
{type: \'line\', smooth: true, seriesLayoutBy: \'row\'},
{type: \'line\', smooth: true, seriesLayoutBy: \'row\'},
{
type: \'pie\',
id: \'pie\',
radius: \'30%\',
center: [\'50%\', \'25%\'],
label: {
formatter: \'{b}: {@2012} ({d}%)\'
},
encode: {
itemName: \'product\',
value: \'2012\',
tooltip: \'2012\'
}
}
]
};
myChart.on(\'updateAxisPointer\', function (event) {
var xAxisInfo = event.axesInfo[0];
if (xAxisInfo) {
var dimension = xAxisInfo.value + 1;
myChart.setOption({
series: {
id: \'pie\',
label: {
formatter: \'{b}: {@[\' + dimension + \']} ({d}%)\'
},
encode: {
value: dimension,
tooltip: dimension
}
}
});
}
});
myChart.setOption(option);
});
点我分享笔记